More cubic surfaces violating the Hasse principle

نویسندگان

  • Jörg JAHNEL
  • Jörg Jahnel
چکیده

We generalize L. J. Mordell’s construction of cubic surfaces for which the Hasse principle fails.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The arithmetic of certain del Pezzo surfaces and K3 surfaces

We construct del Pezzo surfaces of degree 4 violating the Hasse principle explained by the Brauer-Manin obstruction. Using these del Pezzo surfaces, we show that there are algebraic families of K3 surfaces violating the Hasse principle explained by the Brauer-Manin obstruction. Various examples are given.

متن کامل

Cubic Points on Cubic Curves and the Brauer-manin Obstruction on K3 Surfaces

We show that if over some number field there exists a certain diagonal plane cubic curve that is locally solvable everywhere, but that does not have points over any cubic galois extension of the number field, then the algebraic part of the Brauer-Manin obstruction is not the only obstruction to the Hasse principle for K3 surfaces.

متن کامل

The Hasse Principle for Pairs of Diagonal Cubic Forms

By means of the Hardy-Littlewood method, we apply a new mean value theorem for exponential sums to confirm the truth, over the rational numbers, of the Hasse principle for pairs of diagonal cubic forms in thirteen or more variables.

متن کامل

Curves over Global Fields Violating the Hasse Principle

We exhibit for each global field k an algebraic curve over k which violates the Hasse Principle. We can find such examples among Atkin-Lehner twists of certain elliptic modular curves and Drinfeld modular curves. Our main tool is a refinement of the “Twist Anti-Hasse Principle” (TAHP). We then use TAHP to construct further Hasse Principle violations, e.g. among curves over any number field of a...

متن کامل

Cubic Moments of Fourier Coefficients and Pairs of Diagonal Quartic Forms

We establish the non-singular Hasse Principle for pairs of diagonal quartic equations in 22 or more variables. Our methods involve the estimation of a certain entangled two-dimensional 21 moment of quartic smooth Weyl sums via a novel cubic moment of Fourier coefficients.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011